Vous êtes ici : Accueil > Equipes de travail > Histoire des mathématiques > Où sont les Zeros de Zeta ?
Publié : 1er juin 2009

Où sont les Zeros de Zeta ?

John Derbyshire, auteur de "Prime Obsession" [1] (Dans le jungle des nombres premiers [2]), est journaliste, romancier, essayiste, "Pop-math author",...

Dernière publication : Unkn()wn Quantity, a Real and Imaginary History of Algebra, Mai 2006.

Sur son site, il nous propose son interprétation de la chanson
"Where are the zeros of Zeta of s" (mp3 + Video).

Les paroles sont de Tom Apostol, (California Institute of Technology)

Where are the zeros of zeta of s ?
to the tune of "Sweet Betsy from Pike"

Where are the zeros of zeta of s ?
G.F.B. Riemann has made a good guess,
They’re all on the critical line, sai he,
And their density’s one over 2pi log t.

This statement of Riemann’s has been like trigger
And many good men, with vim and with vigor,
Have attempted to find, with mathematical rigor,
What happens to zeta as mod t gets bigger.

The efforts of Landau and Bohr and Cramer,
And Littlewood, Hardy and Titchmarsh are there,
In spite of their efforts and skill and finesse,
(In) locating the zeros there’s been no success.

In 1914 G.H. Hardy did find,
An infinite number that lay on the line,
His theorem however won’t rule out the case,
There might be a zero at some other place.

Let P be the function pi minus li,
The order of P is not known for x high,
If square root of x times log x we could show,
Then Riemann’s conjecture would surely be so.

Related to this is another enigma,
Concerning the Lindelof function mu(sigma)
Which measures the growth in the critical strip,
On the number of zeros it gives us a grip.

But nobody knows how this function behaves,
Convexity tells us it can have no waves,
Lindelof said that the shape of its graph,
Is constant when sigma is more than one-half.

Oh, where are the zeros of zeta of s ?
We must know exactly, we cannot just guess,
In orer to strengthen the prime number theorem,
_The integral’s contour must not get too near ’em.

André Weyl has improved an old Riemann’s find guess
By using a fancier Zeta of s
He proves that the zeros are where they should be
Provided that the characteristic is p.

There’s a moral to draw from this long tale of wow,
that every young genius among you must know
If you tackle a problem and seem to get stuck
Just take it mod p and you have better luck.

Notes

[1Joseph Henry Press, Washington DC, 2003 ou Plume 2004

[2Dunod, 2007