Year 2010-2011

Problemath Series 3

29 November 2010

(Deadline: Thursday 23 December 14:00)

Problemath 7

Two brilliant mathematicians, Alice and Bob have been informed that two distinct natural numbers x and y have been chosen from the set $\{2,3,4, \ldots, 69,70\}$. Alice then receives the sum $x+y$ and Bob receives the product $x y$. Here is the conversation which takes place:

Alice says: "I know that you cannot find x and $y . "$

Bob answers: "In this case, I know x and y ".

Alice replies: " And so, so do I!"
What are the values of x and y ?

Problemath 8

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function which associates a real value to every point of \mathbb{R}^{2}.

If $f(a)+f(b)+f(c)+f(d)=0$ each time that a, b, c, d are the four vertices of a square, can one conclude that $f(p)=0$ for every point p of \mathbb{R}^{2} ?

Problemath 9

Are there two functions $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ such that, for one specific real number a, the five expressions written below are two by two distinct real numbers?
(1): $g(f(a))$
(2): $\lim _{x \rightarrow a} g(f(x))$
$x \nexists^{a}$
(3): $g\left(\lim _{x \rightarrow a} f(x)\right)$
(4): $\lim _{g} g(y)$
$y \rightarrow \underset{\neq}{f(a)}$
(5): $\lim _{\substack{x \rightarrow a \\ \neq a}} \lim _{\substack{y \rightarrow f(x) \\ \neq}} g(y)$

