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The word “symmetry” is used in mathematics quite differently from in ordinary
speech. In everyday life one applies it mainly to two-sided, right-left symmetry; but
not so in mathematics. Admittedly, the word sometimes has a more general
meaning in everyday speech. For example, everyone recognises that Figure 1 is
highly symmetric, although it has no two-sided symmetry. However, this 1s really an
exception. (The example of Figure 1 calls for some comment: in preparing this
lecture it struck me that one can easily run into political or religious symbols when
seeking examples of highly symmetric figures. This shows that symmetry has always
had a powerful effect on people.)
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Figure 1

A second difference between symmetry in mathematics and symmetry in ordi-
nary speech lies in the fact that perfect symmetry exists only in mathematics and
not in real life. Here I need only allude to the fact emphasised by Hermann Weyl
in his book Symmetry, that in western art the artist avoids the possibility of perfect
symmetry and always breaks it slightly. There are beautiful examples of this, such
as the famous Etruscan riders on the triclinic tomb in Corneto (Figure 2).

The picture is almost symmetric, but not quite. Perfect symmetry in art is often
a little boring! In mathematics it is not so (even though in recent times mathemati-
cians have also been interested in “near symmetries”). However, the assertion that
complete symmetry never appears in reality is more fundamental than that. Look
at Figure 3, for example.

Symmetries appear at first glance—and we shall come back to them—but they
vanish when one looks more closely. This is immediately clear when one observes
the symbols attached to the vertices—the 30 vertices have 30 different names—but
even when one overlooks this, one easily finds small irregularities in the drawing
that destroy all visible symmetries.
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Figure 2

Figure 3

If one disregards the symbols and the small irregularities, however, then one
immediately recognises a rotation symmetry of order 5, indeed a symmetry of order
10 if one makes no distinction between the “white” and “black” points. But much
more symmetry is hidden in this figure, and it becomes apparent when one regards
the figure simply as a graph. This means that one notices only the 30 points (lying
on the boundary) and pairs of these that are connected. One may think of the 30
points, for example, as 30 people, with connections between acquaintances. The
lengths and angles of the connecting lines (called edges) play no role. The hidden
symmetries may then be observed as follows.

Each white point is connected to three black points, and the pairs of symbols
attached to the latter three points form a so-called partition of the set {1, 2, 3,4, 5, 6}.
For example, the point 12 is connected to 46, 15, and 23, so we obtain the partition
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(46)(15)(23) of the set {1,2,3,4,5,6}. Conversely, if one takes an arbitrary parti-
tion, say (12)(34)(56), one finds that the corresponding three black points 12, 34,
and 56 are connected to the same white point, in this case 23. Thus the white
points are associated with the 15 partitions of {1, 2,3, 4,5, 6} into pairs.

Now each permutation o of the set {1,2,3,4,5,6} yields a permutation of the
black points (since these correspond to pairs of elements of that set), as well as a
permutation of the white points (regarded as partitions), which together represent
a symmetry of the whole figure (regarded as a graph). For example, the permuta-
tion

1-2-3-4-55-6-1 (1)
yields the symmetry

12 523 — 34 > 45 = 56 > 16 — 12,
13 > 24 - 35— 46 — 15 — 26 — 13,
14 — 25 — 36 — 14,
19 — (1
LL \L
— (26)(34)(15) =45
— (13)(45)(26) =26
— (24)(56)(13) = 14
— (35)(16)(24) =25
- (46)(12)(35) = 46
— (15)(23)(46) = 12,
and similarly
13> 353613
1556 - 16 —> 15
23 < 34
24 — 24.

We remark that the resulting permutation of the white points may be simply
described as being induced by the permutation
7. 1-5-6-1, 24, 33 (2)
becomes associated with a permutation & of {1,2,3,4,5, 6}, which usually seems
very different from o. (One notices, for example, that the o in (1) permutes the
six symbols 1,2,3,4, 5, 6 cyclically, whereas o in (2) has a “fixed point”, namely 3.)
The 720 permutations of 1,2, 3, 4,5,6 (and also those of 1,2,3,4,5,6 form a
group, the so-called symmetric group S¢. The correspondence o < & is a symmetry
—or, as ope says in mathematical language, an automorphism—of the group S,.
The existence of this so-called outer automorphism of S, is a well-known and
remarkable phenomenon, which has no analogue when 6 is replaced by another
integer. By means of the above method (inducing symmetries by permutations) we
have obtained 720 symmetries of the graph in Figure 3; there are 1440 when one
also combines them with the central symmetry 12 < 12,13 « 13,...,56 < 56,
which indeed is a symmetry only when white and black points are not distin-
guished.
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One sees that the symmetry properties of a figure depend very much on how
one visualises the figure: in Figure 3, whether one pays attention to irregularities in
drawing, lengths of lines, the difference between white and black points etc. This
leads in a natural way to the concept of a mathematical object, namely a thing for
which the properties one intends to consider are prescribed at the beginning. Such
objects can have proper symmetries. In daily life, on the other hand, it is usual and
often necessary to consider all aspects of a thing, as far as possible, and this
naturally destroys all symmeftry.

In mathematics and physics, remarkable symmetries are often hidden. Figure 3
showed us two examples of this: on the one hand there are 720 symmetries of the
graph, which come from permutations of {1, 2, 3,4, 5, 6} and are not at all apparent,
apart from the 72 degree rotation and its multiples; on the other hand there is the
outer automorphism of S,. One of the most interesting tasks of the mathematician
is to discover such hidden symmetries. We shall give further examples.

In order to introduce the next example, we present two apparently elementary
problems. The first is: in how many ways may a natural number N be decomposed
Into sums of odd numbers? One must frank a letter with N cents, say, using stamps
of denominations 1 cent, 3 cents, 5 cents, etc., and we ask in how many ways this is
possible. With N = 6, for example, there are four solutions. The number M of
solutions grows with N according to a law that is not at first easy to ascertain
(Figure 4).

The second problem formulated in Figure 4 is not so easy to explain in terms of
stamps, but let us try. The stamps are of two kinds: “normal” stamps whose values
are even numbers, and ‘“‘special” stamps whose values are the so-called triangular
numbers {1,3,6,10,...}, and they are subject to the condition that at most one
special stamp is used. Again we ask for the number of combinations of such stamps
that add up to N cents.

It is remarkable that these two very different problems have the same answer:
for every N the numbers of combinations of the two types are equal (Figure 4).
This corresponds to a well-known and deep formula of Gauss (Figure 5).

541

ProBLEM 1. In how many ways may a given positive integer N be expressed as a
monotonically decreasing series of positive odd integers?

Example. 6=1+1+1+1+1+1
=3+1+1+1
=3+3
=5+1

PrROBLEM 2. In how many ways may the number N be expressed as an ordered sum
whose first term is of the form n(n + 1) /2, while the other terms form
a monotonic increasing sequence of positive even integers?

Example. 6=0+2+2+2
=0+2+4
=0+6
=6
Both problems have the same answer M:
N |1 2
M1 o1

45 6 7 8 9 10 11 12 13
2 3 4 5 6 8 10 12 14 17...

o}

SRS

Figure 4
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The equivalence of Problems 1 and 2 corresponds to the formula of Gauss

2 o
T](qz) — IZ qz(n+%)2
m(9)

n= —ow

where

n(q) - q1/24 . H(l _ qn‘)
n=1

Figure 5

Should one now say that the whole situation is completely understood as soon
as a proof of the Gauss formula is produced? 1 do not think so. One gains a deeper
insight by constructing a mathematical object that reflects the two problems, and in
such a way that their equivalence (that is, the equality of their number of solutions)
corresponds to a symmetry (no doubt hidden) of the object. The existence of this
symmetry then explains not only the equivalence of the problems but also the
formula of Gauss. Such an object was found by Frenkel, Kac, Lepowsky, et al. in
the representation theory of certain Kac-Moody-Lie algebras.

To introduce our last example of a hidden symmetry, consider the lattices
shown in Figures 6 and 7, whose symmetries we investigate briefly. Both have the
so-called translation symmetries, which we wish to disregard here. To exclude
them we could, for example, fix a point of the lattice. The symmetry group then
becomes finite, and indeed of order 12 for Figure 6—one finds 6 rotations and 6
reflections that leave the lattice invariant—and order 8 for the lattice in Figure 7
(which is therefore somewhat less symmetric than the first).

Symmetry groups of lattices have excited great interest in recent times, for
number theory reasons among others. If one investigates lattices in three-dimen-
sional space, four-dimensional space, etc. from the standpoint of symmetry, there
suddenly appears in twenty-four-dimensional space a quite special lattice, which is
highly symmetric. It is the so-called Leech lattice (unknown until 30 years ago,
which seems scarcely conceivable to many mathematicians today). When J. Leech
discovered that lattice he did not know that it had extraordinary symmetry
properties. He was interested in quite a different problem, namely, dense packings
of spheres. Looking at the lattice as he did, with the construction he gave, the
lattice does not appear to be particularly symmetrical. The construction may be

Figure 6
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Figure 7

roughly described as follows: one begins with a nice symmetric lattice, the rectan-
gular one, removes some points, and replaces them with others. Both modifications
are asymmetric and would appear to partially destroy the original symmetry.
However, the process produces new symmetries that are not immediately visible:
they are “hidden symmetries”. J. H. Conway was the first to notice that the Leech
lattice has an enormous symmetry group, a group of order 8 315 553 513 086 720
000. I know of no explicit construction of the Leech lattice that allows the full
symmetry to be immediately seen: there always remain hidden symmetries that are
difficult to find.

A last, famous, example is the following. It is known that in the space of one
hundred and ninety six thousand eight hundred and eighty three dimensions there
is a wonderful lattice whose symmetry group has order

808 017 424 794 512 875 886 459 904 961 710 757 005 754 368 000 000 000
= 2%6.3%0.5%.76.112.13%-17-19-23-29-31-41-47-59 - 71

Of course, no one has ever really seen this lattice: we know that it exists, but an

explicit construction is lacking. Nevertheless, one can consfruct the symmetry

group of the lattice, the so-called monster group M of R. Griess and B. Fischer.

Here again, finding a hidden symmetry is an essential step in the construction. The
group M has a certain subgroup of order

2%.39.54.72. 1113 - 23,
which is well understood. To generate M, Griess constructs in the space of 196
883 dimensions a certain object, a so-called algebra, which has this smaller group
as (part of) its symmetry group. Then with greater difficulty he determines another
symmetry, which is truly hidden. Together with the known subgroup, the hidden
symmetry generates the group M. The author showed later that M is the full
symmetry group of the Griess algebra.

Now it is natural to ask: why is one particularly interested in this monster
group? Is it more than a beautiful game? I would like to show that the answer is
decidedly positive.

Since Galois, the question of finding all possible symmetry types, and hence all
existing groups (and here I always mean finife groups) has had a clear meaning. It
is indeed a natural question, even a fundamental one, but it turns out not to be a
reasonable problem, as I now briefly explain.

It is well known that each natural number is a product of prime numbers, which
are therefore the “atoms” of number theory. Finite group theory also has its
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“atoms”, which are called simple groups: each group is composed from such atoms
in a certain way. But while the composition process in number theory is nothing
else but the ordinary multiplication, in group theory the corresponding
process—called “extension”—is considerably more complicated and diverse: here,
given atoms (simple groups) may be combined in many ways, and when the number
of constituents and their mutual “reactivities” is large, the totality of combinations
becomes completely beyond apprehension.

Still, there remains the obviously natural question of enumerating at least all
the finite simple groups. Until 40 years ago even this problem was considered
unrealistic, yet it has recently been solved completely. The proof has not been
completely written down yet, despite the production of thousands of pages (the
combined work of many specialists coordinated by D. Gorenstein), but the result is
astounding. As may be expected, there are infinitely many finite simple groups, but
they can all be described in a concise and unified way apart from 26 exceptions,
which lie outside this nice framework and are called sporadic groups. Here the
monster group plays a special role: it is the largest sporadic simple group and was

+1h Tagt As A T 11 1 1
the last discovered. In addition, it has remarkable and mystericus number-

theoretic properties. Understanding these properties is one of the most fascinating
problems in finite group theory today. It is worth mentioning that, in a recent work
of 1. Frenkel, J. Lepowsky, and A. Meurman on this theme, the hidden symmetry
between the two problems in Figure 4 plays an essential role.

To conclude, I show another beautiful and well-known figure, an icosahedron.
The psychological effect of highly symmetric objects, mentioned at the beginning,
is reflected in the increasingly frequent appearance of the icosahedron in our
publicity-oriented world. However, the model shown here (Figure 8) is particularly
worthy of respect, since it is is supposedly due to Leonardo da Vinci.

uotw ") uopadidy vosparjod]

1cofzedron Planum Vacuum

Figure §

It is an easy exercise to determine all the symmetries of the icosahedron: one
finds 60 rotations and the 60 products of these with-the central symmetry. Now
imagine the space of 196 883 dimensions, containing a crystal somewhat like the
icosahedron, except that it has

808 017 424 794 512 875 886 459 904 961 710 005 754 368 billion
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rotational symmetries. These symmetries make up the monster group, which the
reader can now begin to imagine—at the same time, perhaps, gaining some
impression of the beauty of symmetries in mathematics.
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A Reality Check for Mathematicians
You need to take a break from mathematics if;

e You hear the name “Simpson” and immediately think of
parabolic approximations of the integral.

e You think that “prime time TV” refers to what’s on at 2, 3, 5, 7,
and 11 o’clock.

e You thought the movie Matrix had something to do with linear
algebra.

e In the movie Casablanca you thought Humphrey Bogart was
saying “Here’s looking at Euclid”.

e When someone asks “What’s your sign?”, you wonder if you're a
positive or a negative.

Submitted by David Sprows, Villanova University
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